
Training models

.

26-03-2020

Jens Peter Andersen, Assistant Professor, Roskilde

Linear model – refreshing

Hypothesis function in general:

ŷ= θ0 + θ1x1 + θ 2x2+......... + θ nxn

Where:

• ŷ is the predicted value - e.g. We want to predict ‘total clicks per day’

• n is the number of features - e.g. we may have only 1 feature, ‘cost per click’

• xi is the ith feature value – e.g. x1 may represent the value of a ‘cost per click’

• θ j is the jth model parameter – e.g. only θ 0 and θ 1 are relevant with only one feature

2

6

.

0

3

.

2

Computational complexity – What does it mean?

Computational complexity:

• Expresses something about computer resources needed to solve a problem.

• That is resources needed when learning from a feature set with n features and m feature instances (learning set)

• Or resources needed to predict or classify using the model

Expressing computational complexity:

• As a function of number of elements – number of features or number of feature instances

• We are most interested in knowing how resources needed as the number of elements grows

Examples:

• O(m) expresses that resources needed are proportionally or linear dependent on elements processed. That is increasing

number of elements processed by a factor 2 increases resources needed by a factor 2

• O(n2) expresses that resources needed are quadratic dependent on elements processed. That is increasing number of

elements processed by a factor 2 increases resources needed by a factor 22=4

2

6

.

0

3

.

3

Computational complexity – Closed form

We have learned about the closed form linear regression so far.

Typical complexity for closed form computations:

• Training the model with m feature instances is complexity O(m) – proportionally or linear dependent on elements processed

• Training the model with n features is complexity O(n(>2)) – e.g. increasing n by 2 could increase processing resources needed

by 23=8

2

6

.

0

3

.

4

Computational complexity – Examples

In one of the videos a huge number of features is mentioned, when it comes to predicting on basis of the human genom. So

closed form computation would definitely not be a good idea for learning in this case.

Any other examples where the number of featuree is huge?

2

6

.

0

3

.

5

Gradient descend – General learning approach

• Applicable for various kinds of models, which includes:

• Linear

• Polynomial

• Logistic regression (classification)

• Out of core learning is possible – can be fast when m – the of the feature set increases

• Fast when n - the number of model paramters θ1,…,θn - increases

2

6

.

0

3

.

6

Gradient descend – minimizing MSE

• Applied in order to optimize by minimizing a so-called cost function – typically MSE in machine learning.

• Here the Mean Square Error is a function of the model parameters – that is MSE(θ1,…,θn)

• ‘Gradient’ refers to observing on the slope of the cost function – negative, zero or positive.

• We want to end up in a set of values for θ1,…,θn where the slope of the cost function is zero – that means minimum reached.

• ‘Descend’ refers to that we are adjusting the values of θ1,…,θn in the direction where the cost function diminishes

2

6

.

0

3

.

7

Linear model - Mean squared error (MSE)

Problem: Finding the model parameters θ0 and θ1

ŷ= θ0 + θ1 x1

Solution: Finding the model parameters θ0 and θ1 by minimizing MSE:

MSE(θ1, θ0)= 1/N Σi=1..N (yi – (θ1 xi + θ0))2

2

6

.

0

3

.

8

Linear model - Mean squared root error

• Mathematically we want to calculate the so-called partially derivative with respect to all model parameters in order to approach

the minimum for MSE.

• With 2 model parameters the partially derivatives are expressed like this :

• ∂MSE(θ1, θ0)/ ∂θ1 - Expresses slope in the direction of θ1

• ∂MSE(θ1, θ0)/ ∂θ0 - Expresses slope in the direction of θ0

• Don’t worry we will look at the curves soon

2

6

.

0

3

.

9

Performing Gradient Descent - Exercise

2

6

.

0

3

.

10

Explain to yourselves in the groups the process on how the cost function Mean Sqaure Error (MSE)

goes towards the minimum, use curves below for help.

Performing Gradient Descent – the principle

While (Minimum not reached)

{

Based on the learning set:

θ0 = = θ0 - LearningRate * ∂MSE(θ1, θ0) / ∂θ0

θ1 = = θ1 - LearningRate * ∂MSE(θ1, θ0) / ∂θ1

}

2

6

.

0

3

.

11

Being too ‘scrooge’ with the learning rate

• Learning rate is too small will make gradient descend too slow

• That is, the model parameters θ0 ... θ1 are changing in small steps that slows down the algorithm

• Eventually MSE(θ0, …., θn) will converge towards a minimum

2

6

.

0

3

.

12

Being too ‘gready’ with the learning rate

• Learning rate is too big will make gradient descend diverge away from finding the minimum MSE(θ0, …., θn)

• That is, the model parameters θ0 ... θ1 are changing in big steps that makes the learning algorithm get lost

2

6

.

0

3

.

13

Being too ‘gready’ with the learning rate - Exercise

• Explain to yourselves in your group, the process on how the too ‘gready’ scenario evolves, use the curve below for help.

2

6

.

0

3

.

14

Adjusting the learning rate - example

• To the left: ‘Scrooge’ learning rate η = 0.02 – too small approaching MSE optimum slowly

• In the middle: ‘Appropriate’ learning rate η = 0.1 – approaches MSE optimum in reasonable time

• To the right: ‘’

2

6

.

0

3

.

15

Learning rate – SGDRegressor example

2

6

.

0

3

.

16

Available parameters:

• learning_rate:string, default=’invscaling’

The learning rate schedule:

• ‘constant’: eta = eta0

• ‘optimal’: eta = 1.0 / (alpha * (t + t0)) where t0 is chosen by a heuristic proposed by Leon Bottou.

• ‘invscaling’: [default]: eta = eta0 / pow(t, power_t)

• ‘adaptive’: eta = eta0, as long as the training keeps decreasing.

Each time n_iter_no_change consecutive epochs fail to decrease the training loss by tol or fail to

increase validation score by tol if early_stopping is True, the current learning rate is divided by 5.

• eta0:double, default=0.01

The initial learning rate for the ‘constant’, ‘invscaling’ or ‘adaptive’ schedules. The default value is 0.01.

• power_t:double, default=0.25

The exponent for inverse scaling learning rate.

Source: scikit-learn.org

Nice linear regression properties with MSE cost function

• The MSE cost function for a Linear Regression model a so-called convex function

• Convex: Red line segment will never cross the curve below

• This means that is has only one global minimum.

• It is a continuous function with a slope that never changes abruptly

• Gradient Descent is then guaranteed to approach arbitrarily close the global minimum.

2

6

.

0

3

.

17

Performing Gradient Descent Stochastic – the principle

• Instead of processing the entire training set, we pick one training set instance at a time

• Faster than the Batch Gradient Descend

• But more erractic

While (Minimum not reached)

{

Based on picking one element at a time in the learning set randomly:

θ0 = = θ0 - LearningRate * ∂MSE(θ1, θ0) / ∂θ0

θ1 = = θ1 - LearningRate * ∂MSE(θ1, θ0) / ∂θ1

}

2

6

.

0

3

.

18

Performing Gradient Descent Mini-batch – the principle

• Instead of processing the entire training set, we pick a batch training set instance at a time

• Trade of between batch and stochastic gradient descend

• Fast and less erractic

While (Minimum not reached)

{

Based on picking batch of elements at a time in the learning set randomly:

θ0 = = θ0 - LearningRate * ∂MSE(θ1, θ0) / ∂θ0

θ1 = = θ1 - LearningRate * ∂MSE(θ1, θ0) / ∂θ1

}

2

6

.

0

3

.

19

Comparing gradient descend approaches

Different paths in development in model parameters

2

6

.

0

3

.

20

Gradient Descend – Feature scaling needed

• Feature scaling: Features (learning input) have same order of magnitude – e.g. in the the area -1 to 1

• To the left: Feature scaling applied -> Minimum of cost function approached faster

• To the right: Feature scaling not applied -> Minimum of cost function approached slower

• Feature scaling can be obtained by the Scikit-Learn’s StandardScaler

• Feature scaling is recommended for gradient descent algorithms

2

6

.

0

3

.

21

Some comparison on linear regression algorithms

2

6

.

0

3

.

22

Learning curves

• Purpose: Evaluating a model by comparing performance RMSE on both the training and validation sets

• Focus: Overfit and underfit situations

2

6

.

0

3

.

23

Learning curves - examples

• Overfit: Green curve, polynomium degree 300. Performs well on the training set. Will it also perform well on the validation

set?

• Underfit: Red curve, straight line (polynomium degree 1). Comparable lower performance on both training and validation sets.

• Good fit: Blue curve. Polynomium degree 2. Good performance on both training and validation sets.

2

6

.

0

3

.

24

Learning curves – recognizing underfit

• Relatively poor performance RMSE on both validation and training sets

• Performance RMSE on both validation and training sets are compareable

2

6

.

0

3

.

25

Learning curves – recognizing overfit

• Relatively good performance RMSE on the training set and a lot worse both the validation set

• Performance RMSE on both validation and training sets are less compareable

2

6

.

0

3

.

26

Learning curves – comparing underfit and overfit

• To the left: Underfit situation - aka high bias

• To the right: Overfit situation – aka high variance

2

6

.

0

3

.

27

Regularized models

• Purpose: Avoiding the overfitting situation

• Overfitting: Model fits training set well, but fits the validation set badly

• Polynomial models: Reduce polynomial degrees

• Linear models: Constrain the model parameters θ1,…,θn - That is reducing slopes

2

6

.

0

3

.

28

Ridge Regression

• Adding a penalty to the cost function MSE during learning only

• Keeps models weights as small as possible

• Different learning conditions depending ‘penalty factor’ α

• Linear model to the left – Polynomial model to the right

2

6

.

0

3

.

29

Lasso Regression

• Adding a penalty to the cost function MSE during learning only

• Eliminates the least important features

• Different learning conditions depending ‘penalty factor’ α

• Linear model to the left – Polynomial model to the right

2

6

.

0

3

.

30

Elastic Net

• Is a combination of the Ridge and Lasso regression

2

6

.

0

3

.

31

Early Stopping – stop learning when validation is best

• Error RMSE when predicting on training set approaches zero

• Error RMSE when predicting on the validation set reaches the minimum

• The model is best at this minimum

• If proceeding further, we will recognize the overfit situation

2

6

.

0

3

.

32

Early stopping – SGDRegressor example

Available parameters:

• early_stopping : bool, default=False

Whether to use early stopping to terminate training when validation score is not improving. If set to True, it will automatically

set aside a fraction of training data as validation and terminate training when validation score is not improving by at least tol for

n_iter_no_change consecutive epochs.

• n_iter_no_change : int, default=5

Number of iterations with no improvement to wait before early stopping.

• validation_fraction : float, default=0.1

The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if

early_stopping is True.

Source: scikit-learn.org

2

6

.

0

3

.

33

